Learning Reinforcement Learning (with Code, Exercises and Solutions)

Skip all the talk and go directly to the Github Repo with code and exercises.

Why Study Reinforcement Learning

Reinforcement Learning is one of the fields I’m most excited about. Over the past few years amazing results like learning to play Atari Games from raw pixels and Mastering the Game of Go have gotten a lot of attention, but RL is also widely used in Robotics, Image Processing and Natural Language Processing.

Combining Reinforcement Learning and Deep Learning techniques works extremely well. Both fields heavily influence each other. On the Reinforcement Learning side Deep Neural Networks are used as function approximators to learn good representations, e.g. to process Atari game images or to understand the board state of Go. In the other direction, RL techniques are making their way into supervised problems usually tackled by Deep Learning. For example, RL techniques are used to implement attention mechanisms in image processing, or to optimize long-term rewards in conversational interfaces and neural translation systems. Finally, as Reinforcement Learning is concerned with making optimal decisions it has some extremely interesting parallels to human Psychology and Neuroscience (and many other fields).

With lots of open problems and opportunities for fundamental research I think we’ll be seeing multiple Reinforcement Learning breakthroughs in the coming years. And what could be more fun than teaching machines to play Starcraft and Doom?

How to Study Reinforcement Learning

There are many excellent Reinforcement Learning resources out there. Two I recommend the most are:

The latter is still work in progress but it’s ~80% complete. The course is based on the book so the two work quite well together. In fact, these two cover almost everything you need to know to understand most of the recent research papers. The prerequisites are basic Math and some knowledge of Machine Learning.

That covers the theory. But what about practical resources? What about actually implementing the algorithms that are covered in the book/course? That’s where this post and the Github repository comes in. I’ve tried to implement most of the standard Reinforcement Algorithms using Python, OpenAI Gym and Tensorflow. I separated them into chapters (with brief summaries) and exercises and solutions so that you can use them to supplement the theoretical material above. All of this is in the Github repository.

Some of the more time-intensive algorithms are still work in progress, so feel free to contribute. I’ll update this post as I implement them.

Table of Contents

List of Implemented Algorithms

RNNs in Tensorflow, a Practical Guide and Undocumented Features

In a previous tutorial series I went over some of the theory behind Recurrent Neural Networks (RNNs) and the implementation of a simple RNN from scratch. That’s a useful exercise, but in practice we use libraries like Tensorflow with high-level primitives for dealing with RNNs.

With that using an RNN should be as easy as calling a function, right? Unfortunately that’s not quite the case. In this post I want to go over some of the best practices for working with RNNs in Tensorflow, especially the functionality that isn’t well documented on the official site.

The post comes with a Github repository that contains Jupyter notebooks with minimal examples for:

Continue reading

Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow

The Code and data for this tutorial is on Github.

Retrieval-Based bots

In this post we’ll implement a retrieval-based bot. Retrieval-based models have a repository of pre-defined responses they can use, which is unlike generative models that can generate responses they’ve never seen before. A bit more formally, the input to a retrieval-based model is a context c (the conversation up to this point) and a potential response r. The model outputs is a score for the response. To find a good response you would calculate the score for multiple responses and choose the one with the highest score.

Continue reading

Deep Learning for Chatbots, Part 1 – Introduction

Chatbots, also called Conversational Agents or Dialog Systems, are a hot topic. Microsoft is making big bets on chatbots, and so are companies like Facebook (M), Apple (Siri), Google, WeChat, and Slack. There is a new wave of startups trying to change how consumers interact with services by building consumer apps like Operator or x.ai, bot platforms like Chatfuel, and bot libraries like Howdy’s Botkit. Microsoft recently released their own bot developer framework.

Many companies are hoping to develop bots to have natural conversations indistinguishable from human ones, and many are claiming to be using NLP and Deep Learning techniques to make this possible. But with all the hype around AI it’s sometimes difficult to tell fact from fiction.

In this series I want to go over some of the Deep Learning techniques that are used to build conversational agents, starting off by explaining where we are right now, what’s possible, and what will stay nearly impossible for at least a little while. This post will serve as an introduction, and we’ll get into the implementation details in upcoming posts.

Continue reading

Attention and Memory in Deep Learning and NLP

A recent trend in Deep Learning are Attention Mechanisms. In an interview, Ilya Sutskever, now the research director of OpenAI, mentioned that Attention Mechanisms are one of the most exciting advancements, and that they are here to stay. That sounds exciting. But what are Attention Mechanisms?

Attention Mechanisms in Neural Networks are (very) loosely based on the visual attention mechanism found in humans. Human visual attention is well-studied and while there exist different models, all of them essentially come down to being able to focus on a certain region of an image with “high resolution” while perceiving the surrounding image in “low resolution”, and then adjusting the focal point over time.

Continue reading

Implementing a CNN for Text Classification in TensorFlow

The full code is available on Github.

In this post we will implement a model similar to Kim Yoon’s Convolutional Neural Networks for Sentence Classification. The model presented in the paper achieves good classification performance across a range of text classification tasks (like Sentiment Analysis) and has since become a standard baseline for new text classification architectures.

Continue reading

Understanding Convolutional Neural Networks for NLP

When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs were responsible for major breakthroughs in Image Classification and are the core of most Computer Vision systems today, from Facebook’s automated photo tagging to self-driving cars.

More recently we’ve also started to apply CNNs to problems in Natural Language Processing and gotten some interesting results. In this post I’ll try to summarize what CNNs are, and how they’re used in NLP. The intuitions behind CNNs are somewhat easier to understand for the Computer Vision use case, so I’ll start there, and then slowly move towards NLP.

Continue reading

Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano

The code for this post is on Github. This is part 4, the last part of the Recurrent Neural Network Tutorial. The previous parts are:

In this post we’ll learn about LSTM (Long Short Term Memory) networks and GRUs (Gated Recurrent Units).  LSTMs were first proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber, and are among the most widely used models in Deep Learning for NLP today. GRUs, first used in  2014, are a simpler variant of LSTMs that share many of the same properties.  Let’s start by looking at LSTMs, and then we’ll see how GRUs are different.

Continue reading

Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradients

This the third part of the Recurrent Neural Network Tutorial.

In the previous part of the tutorial we implemented a RNN from scratch, but didn’t go into detail on how Backpropagation Through Time (BPTT) algorithms calculates the gradients. In this part we’ll give a brief overview of BPTT and explain how it differs from traditional backpropagation. We will then try to understand the vanishing gradient problem, which has led to the development of  LSTMs and GRUs, two of the currently most popular and powerful models used in NLP (and other areas). The vanishing gradient problem was originally discovered by Sepp Hochreiter in 1991 and has been receiving attention again recently due to the increased application of deep architectures.

Continue reading

Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano

This the second part of the Recurrent Neural Network Tutorial. The first part is here.

Code to follow along is on Github.

In this part we will implement a full Recurrent Neural Network from scratch using Python and optimize our implementation using Theano, a library to perform operations on a GPU. The full code is available on Github. I will skip over some boilerplate code that is not essential to understanding Recurrent Neural Networks, but all of that is also on Github.

Continue reading