Deep Learning for Chatbots, Part 1 – Introduction

Chatbots, also called Conversational Agents or Dialog Systems, are a hot topic. Microsoft is making big bets on chatbots, and so are companies like Facebook (M), Apple (Siri), Google, WeChat, and Slack. There is a new wave of startups trying to change how consumers interact with services by building consumer apps like Operator or, bot platforms like Chatfuel, and bot libraries like Howdy’s Botkit. Microsoft recently released their own bot developer framework.

Many companies are hoping to develop bots to have natural conversations indistinguishable from human ones, and many are claiming to be using NLP and Deep Learning techniques to make this possible. But with all the hype around AI it’s sometimes difficult to tell fact from fiction.

In this series I want to go over some of the Deep Learning techniques that are used to build conversational agents, starting off by explaining where we are right now, what’s possible, and what will stay nearly impossible for at least a little while. This post will serve as an introduction, and we’ll get into the implementation details in upcoming posts.

Continue reading

Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano

The code for this post is on Github. This is part 4, the last part of the Recurrent Neural Network Tutorial. The previous parts are:

In this post we’ll learn about LSTM (Long Short Term Memory) networks and GRUs (Gated Recurrent Units).  LSTMs were first proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber, and are among the most widely used models in Deep Learning for NLP today. GRUs, first used in  2014, are a simpler variant of LSTMs that share many of the same properties.  Let’s start by looking at LSTMs, and then we’ll see how GRUs are different.

Continue reading

Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradients

This the third part of the Recurrent Neural Network Tutorial.

In the previous part of the tutorial we implemented a RNN from scratch, but didn’t go into detail on how Backpropagation Through Time (BPTT) algorithms calculates the gradients. In this part we’ll give a brief overview of BPTT and explain how it differs from traditional backpropagation. We will then try to understand the vanishing gradient problem, which has led to the development of  LSTMs and GRUs, two of the currently most popular and powerful models used in NLP (and other areas). The vanishing gradient problem was originally discovered by Sepp Hochreiter in 1991 and has been receiving attention again recently due to the increased application of deep architectures.

Continue reading